A chromogenic FXIa method with low interference for in-process and final testing of immunoglobulin preparations.

Steffen Rosén Rossix AB, Mölndal, Sweden

SSC 2012 S. Rosén

Disclosures for S. Rosén

In compliance with COI policy, ISTH requires the following disclosures to the session audience:

S. Rosén is Director of Scientific and Medical Affairs at Rossix AB, Mölndal, Sweden

Background and Aim

- FXI has been identified as a risk factor for both arterial and venous thromboembolism.
- Activation of FXI may occur during protein purifications and FXIa can be a contaminant in intermediate or final products such as immunoglobulins (IgG).
- AIM: Develop a highly sensitive chromogenic method for determination of sub-picomolar levels of FXIa, therewith allowing high sample dilutions and minimizing interference from matrix and contaminating proteins such as kallikrein, zymogen FXI and FIXa.

SSC 2012 S. Rosén

Method principle

Method

Sample Dilution / Standard Dilution	50 μL
Heating 3-4 min, 37°C	
Reagent 1, 37°C	50 μL
FIX activation 4 min , 37°C	
Reagent 2, 37°C	50 μL
FIX and FX activation 2 min , 37°C	
FXa Substrate, 37°C	50 μL
Hydrolysis 2 min, 37°C or Kinetic readi	ng
Citric Acid, 2%	50 μL

Reagent 1 (lyophilized): hFIX, hFVIII, CaCl₂

Reagent 2 (lyophilized): hFX, bFIIa, phospholipids, CaCl₂

SSC 2012 S. Rosén

Standard Curve

Standard range: 0.02 - 2 pM Manual microplate method

Sample dilution: 1:40 Mean results from three independent runs

4-parameter curve fitting

SSC 2012 S. Rosén

Matrix interference

Determination of recovery of added human FXIa.

	Undiluted	1:10	1:20	1:30	1:40	1:60	1:100
lgG-1	0.20	0.64	0.71	0.71	0.71	0.68	0.68
lgG-2	0	0.64	0.68	0.73	0.74	0.71	0.67
FXIa in diluent = 0.7 pM							

	Undiluted	1:10	1:20	1:40	1:80	1:160
lgG-3a	0.06	0.50	0.54	0.50	0.51	0.50
lgG-3b	0.09	0.50	0.50	0.51	0.48	0.47
lgG-3c	0.08	0.53	0.54	0.52	0.52	0.48
EXIa in diluent $= 0.5 \text{ nM}$						

 $\mathsf{FX}\mathsf{Ia}$ in diluent = 0.5 pivi

Interference of Kallikrein and FXI +/- FXIa

Kallikrein in diluted sample	FXIa in diluted sample	FXI in diluted sample	Assigned FXIa activity Kallikrein lot#1	Assigned FXIa activity Kallikrein lot#2
0.12 nM	0 pM	0 pM	0 pM	0 pM
1.2 nM	0 pM	0 pM	0.04 pM	0.01 pM
2.5 nM	0 pM	0 pM	0.08 pM	0.02 pM
0.12 nM	0.5 pM	0 pM	0.50 pM	0.47 pM
1.2 nM	0.5 pM	0 pM	0.54 pM	0.51 pM
2.5 nM	0.5 pM	0 pM	0.57 pM	0.51 pM
0.12 nM	0.5 pM	0.4 nM	0.66 pM	0.66 pM
1.2 nM	0.5 pM	0.4 nM	0.71 pM	0.69 pM
2.5 nM	0.5 pM	0.4 nM	0.78 pM	0.71 pM

FXI: preactivation = 0.05 % = 0.2 pM FXIa

Threshold Limits for Interference

Threshold limits for interference in neat sample using a sample dilution of 1:40

Analyte	Threshold limits
Kallikrein	≤ 50 nM
Ethanol	<u><</u> 50%
NaCl	≤ 1 M
Factor II	<u><</u> 0.2 μM
Factor X	No effect at 0.5 μM
Factor XI	No effect at 0.2 μM
Factor Xa	≤ 1.2 nM
Factor IXa	≤ 1 mIU/mL

Conclusions / Summary

- The method is suitable for quantitative activity determination of FXIa as a contaminant in enriched and highly purified protein preparations such as IgG.
- The high sensitivity allows a sample dilution of 1:40, which minimizes interference from the sample matrix and from other analytes.
- The assay allows detection of about 0.015 pM FXIa activity, which translates to 0.6 pM in the neat sample when using a sample dilution of 1:40.
- The assay reagents comprise highly purified components and do not involve use of human plasma.

Acknowledgements

Pia Bryngelhed and Per Rosén are gratefully acknowledged for skilful developmental work.